• DVM360_Conference_Charlotte,NC_banner
  • ACVCACVC
  • DVM 360
  • Fetch DVM 360Fetch DVM 360
DVM 360
dvm360 | Veterinary News, Veterinarian Insights, Medicine, Pet Care
dvm360 | Veterinary News, Veterinarian Insights, Medicine, Pet Care
By Role
AssociatesOwnersPractice ManagerStudentsTechnicians
Subscriptions
dvm360 Newsletterdvm360 Magazine
News
All News
Association
Breaking News
Conference Coverage
Education
Equine
FDA
Law & Ethics
Market Trends
Medical
Politics
Products
Recalls
Regulatory
Digital Media
dvm360 LIVE!™
Expert Interviews
The Vet Blast Podcast
Medical World News
Pet Connections
The Dilemma Live
Vet Perspectives™
Weekly Newscast
dvm360 Insights™
Publications
All Publications
dvm360
Firstline
Supplements
Vetted
Clinical
All Clinical
Anesthesia
Animal Welfare
Behavior
Cardiology
CBD in Pets
Dentistry
Dermatology
Diabetes
Emergency & Critical Care
Endocrinology
Equine Medicine
Exotic Animal Medicine
Feline Medicine
Gastroenterology
Imaging
Infectious Diseases
Integrative Medicine
Nutrition
Oncology
Ophthalmology
Orthopedics
Pain Management
Parasitology
Pharmacy
Surgery
Toxicology
Urology & Nephrology
Virtual Care
Business
All Business
Business & Personal Finance
Hospital Design
Personnel Management
Practice Finances
Practice Operations
Wellbeing & Lifestyle
Continuing Education
Conferences
Conference Listing
Conference Proceedings
Resources
CBD in Pets
CE Requirements by State
Contests
Veterinary Heroes
Partners
Spotlight Series
Team Meeting in a Box
Toolkit
Top Recommended Veterinary Products
Vet to Vet
  • Contact Us
  • Fetch DVM360 Conference
  • Terms and Conditions
  • Privacy
  • Do Not Sell My Information
  • About Us

© 2023 MJH Life Sciences and dvm360 | Veterinary News, Veterinarian Insights, Medicine, Pet Care. All rights reserved.

Advertisement
By Role
  • Associates
  • Owners
  • Practice Manager
  • Students
  • Technicians
Subscriptions
  • dvm360 Newsletter
  • dvm360 Magazine
  • Contact Us
  • Fetch DVM360 Conference
  • Terms and Conditions
  • Privacy
  • Do Not Sell My Information
  • About Us
  • MJHLS Brand Logo

© 2023 MJH Life Sciences™ and dvm360 | Veterinary News, Veterinarian Insights, Medicine, Pet Care. All rights reserved.

You make me want to vomit: Clinical pathophysiology of emesis (Proceedings)

August 1, 2009
Craig B. Webb, PhD, DVM, DACVIM

The clinical pharmacology of emesis and anti-emetics is dictated by the neurochemistry of the vomiting (emetic) center as well as the various afferent (input) and efferent (outflow) pathways involved in the act of emesis.

The clinical pharmacology of emesis and anti-emetics is dictated by the neurochemistry of the vomiting (emetic) center as well as the various afferent (input) and efferent (outflow) pathways involved in the act of emesis. Figure 1 summarizes our current understanding of the neural pathways and receptors that mediate this process, and Table 1 further describes the receptors and neurotransmitters involved.

Figure 1

It is the combination of the cause of the emesis, the neural input that transmits that causation to the Vomiting Center, and the transmitters/receptors that mediate that neural communication that dictate the anti-emetic most likely to be effective (Table 2), bearing in mind that sometimes the best strategy to prevent movement of the GI contents in the wrong direction is to encourage it to flow in the correct direction (i.e. promotility agents).

Advertisement

Table 1

For example, many chemotherapeutic agents are thought to stimulate the release of large amounts of serotonin in the GI tract, causing nausea and vomiting. Hence, it is common practice to treat those pets receiving chemotherapy with a 5-HT3 antagonist such as Ondansetron prior to the administration of the chemotherapeutic drug. The neurochemistry of emesis may also help to explain why certain anti-emetics appear more powerful than others regardless of the underlying cause, as drugs such as Maropitant can act at both the Chemoreceptor Trigger Zone and the Vomiting center. Differences in these neural pathways between species will help account for differences in efficacy when the same drug is used in cats compared to dogs. Histamine receptors appear to play only a minor role in the vomiting reflex in cats, hence diphenhydramine is not a recommended anti-emetic in this species, despite being a reasonably effective anti-emetic for certain causes of vomiting in the dog. Dopamine receptors are an important input in the CRTZ of the dog, whereas they may not be present in the CRTZ of the cat. This explains why apomorphine is such an effective emetic agent in the dog, but likely to do very little except cause extrapyramidal side-effects (craziness) in the cat. The converse of this is that metoclopramide (a D2-dopaminergic antagonist) is much less effective as an anti-emetic in the cat than the dog. In contrast to this, α2-adrenergic and 5-HT3-serotonergic receptors appear to be more important in the CRTZ in the cat compared to the dog, and a side-effect of xylazine (an α2-adrenergic agonist) administration in a cat is vomiting. In some cases both species respond to the same anti-emetic, but for different reasons (i.e. the 5-HT3-serotonergic antagonists ondansetron and dolasetron help prevent vomiting in the cat by acting at the CRTZ, whereas it is their action on peripheral receptors that make them effective anti-emetics in the dog.)

Table 2

Table 3

Related Content:

Medical
Tips and tricks for diagnosing canine osteoarthritis early
Tips and tricks for diagnosing canine osteoarthritis early
Performing surgery on dogs with GDV
Performing surgery on dogs with GDV
Not-so-ordinary ER cases you should know
Not-so-ordinary ER cases you should know

Advertisement

Latest News

3 Must-reads from Fetch Charlotte 2023

A practical approach to a fever of unknown origin

Bridge Club aims to bring groomers and veterinarians together

ABVS approves full recognition for shelter medicine practice

View More Latest News
Advertisement