• Hero Banner
  • ACVCACVC
  • DVM 360
  • Fetch DVM 360Fetch DVM 360
DVM 360
dvm360 | Veterinary News, Veterinarian Insights, Medicine, Pet Care
dvm360 | Veterinary News, Veterinarian Insights, Medicine, Pet Care
By Role
AssociatesOwnersPractice ManagerStudentsTechnicians
Subscriptions
dvm360 Newsletterdvm360 Magazine
News
All News
Association
Breaking News
Education
Equine
FDA
Law & Ethics
Market Trends
Medical
Products
Recalls
Regulatory
Digital Media
dvm360 LIVE!™
Expert Interviews
The Vet Blast Podcast
Medical World News
Pet Connections
The Dilemma Live
Vet Perspectives™
Weekly Newscast
dvm360 Insights™
Publications
All Publications
dvm360
Firstline
Supplements
Top Recommended Veterinary Products
Vetted
Clinical
All Clinical
Anesthesia
Animal Welfare
Behavior
Cardiology
CBD in Pets
Dentistry
Dermatology
Diabetes
Emergency & Critical Care
Endocrinology
Equine Medicine
Exotic Animal Medicine
Feline Medicine
Gastroenterology
Imaging
Infectious Diseases
Integrative Medicine
Nutrition
Oncology
Ophthalmology
Orthopedics
Pain Management
Parasitology
Pharmacy
Surgery
Toxicology
Urology & Nephrology
Virtual Care
Business
All Business
Business & Personal Finance
Buying or Selling a Practice
Hospital Design
Leadership & Personal Growth
Personnel Management
Practice Finances
Practice Operations
Technology
Wellbeing & Lifestyle
Continuing Education
Conferences
Live Conferences
Conference News
Conference Proceedings
Resources
CBD in Pets
Contests
Veterinary Heroes
Partners
Spotlight Series
Team Meeting in a Box
Toolkit
Top Recommended Veterinary Products
Vet to Vet
  • Contact Us
  • Fetch DVM360 Conference
  • Terms and Conditions
  • Privacy
  • Do Not Sell My Information
  • About Us

© 2023 MJH Life Sciences and dvm360 | Veterinary News, Veterinarian Insights, Medicine, Pet Care. All rights reserved.

Advertisement
By Role
  • Associates
  • Owners
  • Practice Manager
  • Students
  • Technicians
Subscriptions
  • dvm360 Newsletter
  • dvm360 Magazine
  • Contact Us
  • Fetch DVM360 Conference
  • Terms and Conditions
  • Privacy
  • Do Not Sell My Information
  • About Us
  • MJHLS Brand Logo

© 2023 MJH Life Sciences™ and dvm360 | Veterinary News, Veterinarian Insights, Medicine, Pet Care. All rights reserved.

T cells 'hunt' parasites like predators stalk prey, veterinary researchers find

July 1, 2012

Penn veterinary school, physics department researchers analyze immune system response to Toxoplasma Gondii.

A cross-disciplinary team of veterinary researchers and physics analysts at the University of Pennsylvania have arrived at a somewhat surprising finding: T cells, a key immune system component, track parasites using a movement strategy similar to that of sharks, monkeys and other predators when hunting prey.

The research was led by Christopher Hunter, professor and chair of the pathobiology department in Penn's School of Veterinary Medicine, and Andrea Liu, professor of physics in the school's department of physics and astronomy. Penn Vet postdoctoral researcher Tajie Harris and physics graduate student Edward Banigan also played leading roles.

The study was conducted in mice infected with Toxoplasma gondii, which were used as a model to learn how T cell movement in the brain affects the body's ability to control T. gondii infection.

According to information released by the University of Pennsylvania, the researchers sought to pinpoint the exact movement patterns of individual T cells in living tissue from T. gondii-infected mice using multi-photon imaging, a technique that uses a powerful microscope to display living tissues in three dimensions in real time.

Advertisement

Using this technique the Penn researchers found that, contrary to what immunologists have assumed, the T cells showed no directed motion. That's where the statistical physics expertise of Liu and Banigan came in. "After some work we managed to find a model that fit the tracks beautifully," Liu says.

That model is known as a Lévy walk. This "walk," or a mathematical path, tends to have many short "steps" and occasional long "runs." The model was not fully consistent with the data, however. "Rather, I had to look at variations on the Lévy walk model," Banigan says, because the researchers also observed that the T cells paused between steps and runs. Like the movements of the cells, the pauses were usually short but occasionally long.

Hunter likens the model to a strategy a person might employ to find misplaced keys in the house. "When you lose your keys, how do you go about looking for them?" he says. "You look in one place for a while, then move to another place and look there."

"What that leads to is a much more efficient way of finding things," Liu says. That makes sense for T cells, which have to locate sparsely distributed parasites in a sea of mostly normal tissue.

T cells are not alone in employing a Lévy-type strategy to find their targets. Several animal predators move in a similar way—with many short-distance movements interspersed with occasional longer-distance moves—to find their prey. The strategy seems particularly common among marine predators, including sharks, tuna, zooplankton, sea turtles and penguins, though terrestrial species like spider monkeys and honeybees may use the same approach to locate rare resources.

This parallel with animal predators also makes sense because parasites, like prey species, have evolved to evade detection. "Many pathogens know how to hide, so T cells are not able to move directly to their target," Hunter says. "The T cell actually needs to go into an area and then see if there's anything there."

The model is also relevant to cancer and other immune-mediated diseases, Hunter notes. "Instead of looking for a parasite, these T cells could be looking for a cancer cell," he says. By knowing what controls T cell movement, "you might be able to devise strategies to make the T cells more efficient."

With this new insight into immune-cell movement, researchers may be able to create more accurate models of immune-system function, which may in turn inform novel approaches to combat diseases from cancer and arthritis to HIV/AIDS.

Related Content:

Medical
Integrative approach to treating Giardia lamblia infections
Integrative approach to treating Giardia lamblia infections
Innovative digital microscopy platform is launched
Innovative digital microscopy platform is launched
Drug for acute onset of canine pancreatitis is launched on the US market
Drug for acute onset of canine pancreatitis is launched on the US market

Advertisement

Latest News

Integrative approach to treating Giardia lamblia infections

Innovative digital microscopy platform is launched

Enhanced pet health and wellness app now available

Advice on dog and cat seasonal allergies with air quality threats

View More Latest News
Advertisement