• Hero Banner
  • ACVCACVC
  • DVM 360
  • Fetch DVM 360Fetch DVM 360
DVM 360
dvm360 | Veterinary News, Veterinarian Insights, Medicine, Pet Care
dvm360 | Veterinary News, Veterinarian Insights, Medicine, Pet Care
By Role
AssociatesOwnersPractice ManagerStudentsTechnicians
Subscriptions
dvm360 Newsletterdvm360 Magazine
News
All News
Association
Breaking News
Education
Equine
FDA
Law & Ethics
Market Trends
Medical
Products
Recalls
Regulatory
Digital Media
dvm360 LIVE!™
Expert Interviews
The Vet Blast Podcast
Medical World News
Pet Connections
The Dilemma Live
Vet Perspectives™
Weekly Newscast
dvm360 Insights™
Publications
All Publications
dvm360
Firstline
Supplements
Top Recommended Veterinary Products
Vetted
Clinical
All Clinical
Anesthesia
Animal Welfare
Behavior
Cardiology
CBD in Pets
Dentistry
Dermatology
Diabetes
Emergency & Critical Care
Endocrinology
Equine Medicine
Exotic Animal Medicine
Feline Medicine
Gastroenterology
Imaging
Infectious Diseases
Integrative Medicine
Nutrition
Oncology
Ophthalmology
Orthopedics
Pain Management
Parasitology
Pharmacy
Surgery
Toxicology
Urology & Nephrology
Virtual Care
Business
All Business
Business & Personal Finance
Buying or Selling a Practice
Hospital Design
Leadership & Personal Growth
Personnel Management
Practice Finances
Practice Operations
Technology
Wellbeing & Lifestyle
Continuing Education
Conferences
Live Conferences
Conference News
Conference Proceedings
Resources
CBD in Pets
Contests
Veterinary Heroes
Partners
Spotlight Series
Team Meeting in a Box
Toolkit
Top Recommended Veterinary Products
Vet to Vet
  • Contact Us
  • Fetch DVM360 Conference
  • Terms and Conditions
  • Privacy
  • Do Not Sell My Information
  • About Us

© 2023 MJH Life Sciences and dvm360 | Veterinary News, Veterinarian Insights, Medicine, Pet Care. All rights reserved.

Advertisement
By Role
  • Associates
  • Owners
  • Practice Manager
  • Students
  • Technicians
Subscriptions
  • dvm360 Newsletter
  • dvm360 Magazine
  • Contact Us
  • Fetch DVM360 Conference
  • Terms and Conditions
  • Privacy
  • Do Not Sell My Information
  • About Us
  • MJHLS Brand Logo

© 2023 MJH Life Sciences™ and dvm360 | Veterinary News, Veterinarian Insights, Medicine, Pet Care. All rights reserved.

Mouse Genome Analysis Reveals New Disease Models

July 15, 2017
Laurie Anne Walden, DVM, ELS

According to a new report, the analysis of 3328 mouse genes revealed models for 360 human diseases.

An international consortium working to create a catalog of gene function for the entire mouse genome has released its first set of results. According to the report, which was published June 26 in Nature Genetics, the analysis of 3328 mouse genes revealed models for 360 human diseases. The group is making its data freely available to biomedical researchers.

The International Mouse Phenotyping Consortium (IMPC) is a collaboration of research institutions around the world. Its goal, according to its website, is to “provide the first functional annotation of a mammalian genome.”

Participating IMPC institutions—currently 18—aim to identify the function of each of the 20,000+ mouse genes. The first set of results encompasses about 15% of the protein-encoding genes in the mouse genome.

Advertisement

The laboratory mouse is commonly used as a model for human disease because of its genetic and physiologic similarity to humans. Researchers test the function of individual genes by knocking out (inactivating) 1 gene at a time in embryonic mouse stem cells and observing changes in the physiology or behavior of the resulting knockout mice.

In many cases, knockout mice become research models for corresponding genetic disorders in humans. Most genomic research to date has focused on common inherited diseases. In comparison, rare diseases are not well studied. “Over half of diagnosed rare diseases still have no known associated genes,” say the authors of the report.

IMPC data yields new knowledge in 3 areas, they write: (1) finding new mouse models for human diseases with a known genetic basis, (2) discovering genes associated with human diseases for which a specific genetic basis has not been identified, and (3) identifying genes with a possible (previously unknown) association with disease.

Findings revealed in this first set of data include the following:

  • New mouse models for Bernard-Soulier syndrome type C, Bardet-Biedl syndrome 5, and Gordon-Holmes syndrome
  • A candidate gene for arrhythmogenic right ventricular dysplasia 3
  • New evidence of the function of 1092 previously uncharacterized genes

“Although next-generation sequencing has revolutionized the identification of new disease genes, there is still a lack of understanding of how these genes actually cause disease,” said corresponding author Dr. Damian Smedley, of Queen Mary University of London, in a press release. “These 360 new disease models that we've identified in mice represent the first steps of a hugely important international project. We hope researchers will be able to use this knowledge to develop new therapies for patients, which is ultimately what we're all striving to achieve.”

Dr. Laurie Anne Walden received her doctorate in veterinary medicine from North Carolina State University. After an internship in small animal medicine and surgery at Auburn University, she returned to North Carolina, where she has been in small animal primary care practice for over 20 years. Dr. Walden is also a board-certified editor in the life sciences and owner of Walden Medical Writing, LLC. She works as a full-time freelance medical writer and editor and continues to see patients a few days each month.


Advertisement

Latest News

Pride, representation, and inclusion in vet med

Partnership to promote diversity in veterinary medicine and more

Morris Animal Foundation accepting canine cancer research proposals

AI-enhanced MyLabX90VET ultrasound system unveiled

View More Latest News
Advertisement