• DVM360_Conference_Charlotte,NC_banner
  • ACVCACVC
  • DVM 360
  • Fetch DVM 360Fetch DVM 360
DVM 360
dvm360 | Veterinary News, Veterinarian Insights, Medicine, Pet Care
dvm360 | Veterinary News, Veterinarian Insights, Medicine, Pet Care
By Role
AssociatesOwnersPractice ManagerStudentsTechnicians
Subscriptions
dvm360 Newsletterdvm360 Magazine
News
All News
Association
Breaking News
Conference Coverage
Education
Equine
FDA
Law & Ethics
Market Trends
Medical
Politics
Products
Recalls
Regulatory
Digital Media
dvm360 LIVE!™
Expert Interviews
The Vet Blast Podcast
Medical World News
Pet Connections
The Dilemma Live
Vet Perspectives™
Weekly Newscast
dvm360 Insights™
Publications
All Publications
dvm360
Firstline
Supplements
Top Recommended Veterinary Products
Vetted
Clinical
All Clinical
Anesthesia
Animal Welfare
Behavior
Cardiology
CBD in Pets
Dentistry
Dermatology
Diabetes
Emergency & Critical Care
Endocrinology
Equine Medicine
Exotic Animal Medicine
Feline Medicine
Gastroenterology
Imaging
Infectious Diseases
Integrative Medicine
Nutrition
Oncology
Ophthalmology
Orthopedics
Pain Management
Parasitology
Pharmacy
Surgery
Toxicology
Urology & Nephrology
Virtual Care
Business
All Business
Business & Personal Finance
Hospital Design
Personnel Management
Practice Finances
Practice Operations
Wellbeing & Lifestyle
Continuing Education
Conferences
Conference Listing
Conference Proceedings
Resources
CBD in Pets
CE Requirements by State
Contests
Veterinary Heroes
Partners
Spotlight Series
Team Meeting in a Box
Toolkit
Top Recommended Veterinary Products
Vet to Vet
  • Contact Us
  • Fetch DVM360 Conference
  • Terms and Conditions
  • Privacy
  • Do Not Sell My Information
  • About Us

© 2023 MJH Life Sciences and dvm360 | Veterinary News, Veterinarian Insights, Medicine, Pet Care. All rights reserved.

Advertisement
By Role
  • Associates
  • Owners
  • Practice Manager
  • Students
  • Technicians
Subscriptions
  • dvm360 Newsletter
  • dvm360 Magazine
  • Contact Us
  • Fetch DVM360 Conference
  • Terms and Conditions
  • Privacy
  • Do Not Sell My Information
  • About Us
  • MJHLS Brand Logo

© 2023 MJH Life Sciences™ and dvm360 | Veterinary News, Veterinarian Insights, Medicine, Pet Care. All rights reserved.

Managing for healthy beef calves (Proceedings)

November 1, 2009
Grant Dewell, DVM, MS, PhD

One key for profitability for cow-calf producers is pounds of calf weaned in the fall.

One key for profitability for cow-calf producers is pounds of calf weaned in the fall. The best way to increase the total number of pounds weaned is to have more calves alive at weaning. Typically most calf death loss occurs within the first 3 weeks of life. Proper management focus during this time is an efficient means to enhance productivity and reduce sickness and death loss.

Calving

The first priority is getting a live calf on the ground. Dystocia increases the risk of neonatal calf death by 4 times. Proper observation of females during the calving season can identify dystocia to allow for timely intervention. Ideally, females should be observed every two hours. A recent USDA NAHMS report (http://nahms.aphis.usda.gov/beefcowcalf/index.htm) reported that 50% of producers observe females more than twice a day and less than 15% observe more than 4 times a day. Once a calf is born alive they must intake colostrum for an adequate immune function. Dystocia calves should be administered colostrum via a bottle or esophageal tube instead of relying on them standing and nursing. Beef calves that do not have adequate colostrum intake and absorption may be 9 times as likely to become ill in the preweaning period than calves that had received and absorbed enough colostrum. As usual, protect newborn calves from extreme environmental conditions when necessary.

Advertisement

Nutrition

Proper nutrition is crucial to a successful outcome for the cow and calf. Body Condition Scoring (BCS) can be used to assess the nutritional program of the beef herd.

Historically, there was some thought that protein and energy supplementation was responsible for dystocia problems. Actually many studies have shown that cattle fed low energy diets prior to calving have a higher percentage of dystocia then medium or high energy diets unless cows are overly conditioned with fat deposits in the birth canal. Calves from cows fed adequate energy and protein did have increased birth weights but decreased dystocia rates. Therefore it is important to remember that you cannot starve calving difficulty out of cows.

One of the most important factors is the effect of dam nutrition on calves. Proper energy and protein levels are vital for calf vigor after calving. Calves from energy or protein restricted dams during gestation have decreased calf vigor and ability to generate body heat. Weak calves will be less likely to intake adequate amounts of colostrum and are more prone to increased morbidity and mortality.

Cows should calve at a BCS of 5 (heifers at BCS 6) at calving. Up to 80% of fetal growth occurs in the last 50 days of gestation. Females during this period of gestation need approximately 11 Mcal of energy and 1.7 lbs of crude protein per day.

Weak calves

There are multiple potential factors that are involved with the weak calf syndrome including nutrition and BVD virus. Additionally, the inciting cause of many cases of weak calf syndrome is not diagnosed. Typically, weak calves are born alive but die shortly after birth. Many of these calves never stand and nurse by themselves. If they do stand they are very slow in getting up and never do well, usually dying within 3 days. With intensive management these calves can be nursed along but some will die no matter how exhaustive the therapy.

Pre-partum nutrition is key for preparing the calf for life outside the uterus. Upto 80% of fetal growth occurs in the last 50 days of gestation. Therefore the dam needs adequate nutrition to support the tremendous required growth in the fetus and supply enough additional nutrition to for the calf to have enough reserve to be able to stand and survive after birth.

Protein is one of the biggest nutritional components necessary for fetal development. Calves born from protein restricted dams have decreased calf vigor, decreased thermal heat production, and increased time from birth to standing. A good rule of thumb is that late gestation cows need 2 lbs of protein per day.

Energy is also important for the fetal calf. Fetal brown fat supplies the energy needed for the calf to survive until adequate colostrum and subsequently milk is ingested. Cows need at least 11 Mcal of energy per day. However, during extreme cold weather this requirement increases. Producers need to adapt and feed their cows to fit the environmental conditions. It is important to recognize that although pregnant cows can be roughed through much of the winter, this practice should not include late gestation. Calves born to cows that were losing weight during late gestation will have lower energy stores and longer interval from birth to calving. Additionally, these cows will take longer to breed back.

BVD virus has also been associated with weak calves. This virus is capable of causing multiple congenital problems depending upon the stage of development that the calf was infected. Calves that have had an in-utero BVDV infection have been reported to have hydrocephalous, immature, dummies, or weak in general. If BVDV is suspected contact your veterinarian so that a targeted testing program can be instituted.

Producers should also focus on good management practices during calving. Birth in general is a traumatic event for the calf and dystocia can further exacerbate problems. Dystocia calves will also have decreased calf vigor, weaker and a longer interval from birth until standing. As always a clean dry calving environment helps the calf get off to right start. A calf that is born into a cold wet environment is going to have to spend more energy keeping itself warm before it ever has a chance to stand and nurse.

Neonatal disease

To prevent subsequent neonatal loss due to infectious diseases calving areas should be as clean and dry as possible. Additionally, since neonatal calves amplify pathogen levels it is important to keep newborn calves separate from older calves to break the pathogen cycle. This can be accomplished either by removing pairs from calving area daily or by moving cows that haven't calved to new clean pastures every week; leaving the pairs behind.

Calves should be observed at least once daily for signs of scours and other neonatal diseases. Calves that develop diarrhea need immediate care because dehydration and subsequent death can occur rapidly. Oral fluids can be used to maintain hydration although some calves will require more intensive IV fluids. It is important to remember that although most calves survive a bout of calf scours the cost of treatment and decreased performance are costly. Prevention of calf scours by minimizing length of dystocia, assuring adequate colostral intake and maintaining clean calving areas can enhance the pounds of calf weaned and overall productivity of the beef herd.

Related Content:

Practice ManagerRoles
Hiring employees in line with your brand
Hiring employees in line with your brand
Merck Animal Hospital renews scholarship with The Foundation for the Horse
Merck Animal Hospital renews scholarship with The Foundation for the Horse
How to discuss finances with clients
How to discuss finances with clients

Advertisement

Latest News

3 Must-sees from the Fetch Charlotte conference

Morris Animal Foundation appoints new chief program officer

CDC issues warning over cat-transmitted sporotrichosis

An AI solution is speeding up insurance claims processing

View More Latest News
Advertisement