• DVM360_Conference_Charlotte,NC_banner
  • ACVCACVC
  • DVM 360
  • Fetch DVM 360Fetch DVM 360
DVM 360
dvm360 | Veterinary News, Veterinarian Insights, Medicine, Pet Care
dvm360 | Veterinary News, Veterinarian Insights, Medicine, Pet Care
By Role
AssociatesOwnersPractice ManagerStudentsTechnicians
Subscriptions
dvm360 Newsletterdvm360 Magazine
News
All News
Association
Breaking News
Education
Equine
FDA
Law & Ethics
Market Trends
Medical
Politics
Products
Recalls
Regulatory
Media
dvm360 LIVE!™
Expert Interviews
The Vet Blast Podcast
Medical World News
Pet Connections
The Dilemma Live
Vet Perspectives™
Weekly Newscast
dvm360 Insights™
Publications
All Publications
dvm360
Firstline
Supplements
Vetted
Clinical
All Clinical
Anesthesia
Animal Welfare
Behavior
Cardiology
CBD in Pets
Dentistry
Dermatology
Diabetes
Emergency & Critical Care
Endocrinology
Equine Medicine
Exotic Animal Medicine
Feline Medicine
Gastroenterology
Imaging
Infectious Diseases
Integrative Medicine
Nutrition
Oncology
Ophthalmology
Orthopedics
Pain Management
Parasitology
Surgery
Toxicology
Urology & Nephrology
Virtual Care
Business
All Business
Business & Personal Finance
Hospital Design
Personnel Management
Practice Finances
Practice Operations
Wellbeing & Lifestyle
Continuing Education
Conferences
Conference Listing
Conference Proceedings
Upcoming dvm360 Conferences
Resources
CBD in Pets
CE Requirements by State
Contests
Partners
Spotlight Series
Team Meeting in a Box
Toolkit
Top Recommended Veterinary Products
Vet to Vet
Veterinary Heroes
  • Contact Us
  • Fetch DVM360 Conference
  • Terms and Conditions
  • Privacy
  • Do Not Sell My Information
  • About Us

© 2023 MJH Life Sciences and dvm360 | Veterinary News, Veterinarian Insights, Medicine, Pet Care. All rights reserved.

Advertisement
By Role
  • Associates
  • Owners
  • Practice Manager
  • Students
  • Technicians
Subscriptions
  • dvm360 Newsletter
  • dvm360 Magazine
  • Contact Us
  • Fetch DVM360 Conference
  • Terms and Conditions
  • Privacy
  • Do Not Sell My Information
  • About Us
  • MJHLS Brand Logo

© 2023 MJH Life Sciences™ and dvm360 | Veterinary News, Veterinarian Insights, Medicine, Pet Care. All rights reserved.

Role of Mosquito Microbiota in Reducing Malaria Transmission

April 21, 2018
JoAnna Pendergrass, DVM

The gut microbiota of the Anopheles mosquito has several mechanisms for reducing infection by Plasmodium, suggesting new approaches for reducing malaria transmission.

Malaria is a life-threatening disease in humans causing chills, fever, and flu-like symptoms. It is caused by the parasite Plasmodium malariae, which is transmitted by the Anopheles mosquito. Following a blood meal of a human infected with P malariae, the parasite reaches sexual maturity in the mosquito, traveling through the mosquito’s gut and salivary glands.

Interestingly, the microbiota within the mosquito’s gut, salivary glands, and reproductive organs play an important role in reducing disease transmission by inhibiting Plasmodium gut colonization. This tripartite interaction—mosquito, microbiota, and Plasmodium—has attracted research attention for several decades and suggests a new approach to reducing malaria transmission.

RELATED:

  • Heartworm Incidence on the Rise: What Can Veterinarians Do?
  • Brazilian Monkeys Test Positive for Zika

A recent Parasite & Vectors review paper described the Anopheles microbiota, detailed its mechanisms for blocking Plasmodium infection within the mosquito, and highlighted several challenges in studying the microbiota.

Advertisement

Anopheles Microbiota

A developing Anopheles mosquito acquires its microbiota from its mother and external environment. Many other factors, including diet and blood-feeding history, determine the gut microbiota composition. Whether the Anopheles microbiota has a core bacterial community remains unknown, but several gram-negative bacteria families (Enterobacteriaceae, Acetobacteraceae, Flavobacteriaceae) are found within the midgut microbiota. Although the gut microbiota is very dynamic, the overall bacterial diversity of the microbiota is low.

The midgut, where blood is stored after a blood meal, “represents the first and main bottleneck of parasite development,” the authors wrote. The midgut microbiota predominantly inhibits Plasmodium, with antiparasitic activity coming mainly from gram-negative bacteria. This inhibition occurs through several mechanisms:

  • Immune response: After a blood meal, rapid bacterial proliferation stimulates an antimicrobial immune response due to activation of the immune deficiency pathway.
  • Anti-parasite metabolite production: The microbiota can produce reactive oxygen species, toxins, and other anti-Plasmodium metabolites. Plasmodium, however, can reportedly produce antioxidative enzymes in the gut to fight back.
  • Peritrophic matrix formation: This matrix is composed of chitin and proteins that prevent Plasmodium from entering the body cavity from the midgut. Plasmodium, though, can produce chitinase in response.

Interestingly, these mechanisms may actually dampen the mosquito’s immune response against Plasmodium. For example, activation of the immunomodulatory peroxidase and dual oxidase enzymes after a blood meal helps reduce peritrophic matrix permeability, thus protecting Plasmodium from an immune response.

Regarding Plasmodium transmission, results of several studies suggest that the Anopheles gut microbiota can have a composition-dependent, negative effect on mosquito life span and population size, thus negatively affecting Plasmodium transmission.

Current Challenges

In the wild, the variability of factors influencing Anopheles microbiota composition produces highly variable microbiota diversity between individual mosquitoes. For laboratory-bred mosquitoes, differences in insectaries (eg, husbandry) can also produce variable microbiota compositions. Thus, identifying Anopheles mosquitoes with a representative microbiota is both a challenge and a need for exploring the microbiota—Plasmodium interaction.

The lack of knowledge on how nonbacterial microbiota components (viruses, fungi) interact with Plasmodium presents another challenge. Interestingly, parasites themselves may alter microbiota composition to increase their chances of successful infection.

An additional challenge is determining the role of microbiota outside the gut (salivary glands, ovaries) on Plasmodium infection and transmission. For example, salivary gland microbiota may interact with the parasite once the mosquito has become infective, possibly playing a role in parasite transmission.

Given these challenges, the authors noted that “the tripartite interaction between the mosquito, its microbiota, and the parasite is a complex relationship that still needs further investigation.”

Dr. JoAnna Pendergrass received her DVM degree from the Virginia-Maryland College of Veterinary Medicine. Following veterinary school, she completed a postdoctoral fellowship at Emory University’s Yerkes National Primate Research Center. Dr. Pendergrass is the founder and owner of JPen Communications, a medical communications company.


Advertisement

Latest News

New technology and products for veterinary genealogy

Reduce your veterinary teams’ stress with financial wellness

Cuban crocodiles receive surgery to extract foreign items

Purina Pro Plan Veterinary Diets joins forces with AVMF

View More Latest News
Advertisement