• Hero Banner
  • ACVCACVC
  • DVM 360
  • Fetch DVM 360Fetch DVM 360
DVM 360
dvm360 | Veterinary News, Veterinarian Insights, Medicine, Pet Care
dvm360 | Veterinary News, Veterinarian Insights, Medicine, Pet Care
By Role
AssociatesOwnersPractice ManagerStudentsTechnicians
Subscriptions
dvm360 Newsletterdvm360 Magazine
News
All News
Association
Breaking News
Education
Equine
FDA
Law & Ethics
Market Trends
Medical
Products
Recalls
Regulatory
Digital Media
dvm360 LIVE!™
Expert Interviews
The Vet Blast Podcast
Medical World News
Pet Connections
The Dilemma Live
Vet Perspectives™
Weekly Newscast
dvm360 Insights™
Publications
All Publications
dvm360
Firstline
Supplements
Top Recommended Veterinary Products
Vetted
Clinical
All Clinical
Anesthesia
Animal Welfare
Behavior
Cardiology
CBD in Pets
Dentistry
Dermatology
Diabetes
Emergency & Critical Care
Endocrinology
Equine Medicine
Exotic Animal Medicine
Feline Medicine
Gastroenterology
Imaging
Infectious Diseases
Integrative Medicine
Nutrition
Oncology
Ophthalmology
Orthopedics
Pain Management
Parasitology
Pharmacy
Surgery
Toxicology
Urology & Nephrology
Virtual Care
Business
All Business
Business & Personal Finance
Buying or Selling a Practice
Hospital Design
Leadership & Personal Growth
Personnel Management
Practice Finances
Practice Operations
Technology
Wellbeing & Lifestyle
Continuing Education
Conferences
Live Conferences
Conference News
Conference Proceedings
Resources
CBD in Pets
Contests
Veterinary Heroes
Partners
Spotlight Series
Team Meeting in a Box
Toolkit
Top Recommended Veterinary Products
Vet to Vet
  • Contact Us
  • Fetch DVM360 Conference
  • Terms and Conditions
  • Privacy
  • Do Not Sell My Information
  • About Us

© 2023 MJH Life Sciences and dvm360 | Veterinary News, Veterinarian Insights, Medicine, Pet Care. All rights reserved.

Advertisement
By Role
  • Associates
  • Owners
  • Practice Manager
  • Students
  • Technicians
Subscriptions
  • dvm360 Newsletter
  • dvm360 Magazine
  • Contact Us
  • Fetch DVM360 Conference
  • Terms and Conditions
  • Privacy
  • Do Not Sell My Information
  • About Us
  • MJHLS Brand Logo

© 2023 MJH Life Sciences™ and dvm360 | Veterinary News, Veterinarian Insights, Medicine, Pet Care. All rights reserved.

CVC Virginia Beach 2017: Tick-Borne Disease Overview

May 25, 2017
JoAnna Pendergrass, DVM

Ticks are expanding in number and geographic distribution across the United States. Here’s how veterinarians can help protect people and pets from tick-borne disease.

A. Rick Alleman, DVM, PhD, CEO of Lighthouse Veterinary Consultants, presented a lecture on tick-borne diseases at CVC Virginia Beach earlier this month. Dr. Alleman provided information on basic tick functions and key features of several important ticks. He also discussed the veterinarian’s role in preventing and reducing tick-borne diseases.

Overall, the number and geographic distribution of ticks have expanded, in part due to climate change. Reservoir animals have also contributed to this expansion by increasing exposure to both ticks and tick pathogens.

In addition to the typical reservoir animals—deer and rodents—domestic and wild dogs are recognized as reservoirs of tick pathogens. Domestic dogs, in particular, can be sources of tick-borne infection for pet owners and veterinary personnel.

Dogs are considered sentinels for tick-borne disease in humans. Seroprevalence studies, for example, have reported the use of dogs as sentinels for such diseases as Rocky Mountain spotted fever (RMSF) and Lyme disease.

Life of a Tick

Understanding a tick’s life cycle is important for effectively preventing tick pathogen transmission, Dr. Alleman said. Ticks can live up to 2 years, landing on and hiding within a dog’s long hair coat or ears. After landing on its host, a tick will search for an ideal place to feed.

Feeding

Advertisement

The tick feeding process is complex. A tick first penetrates the skin with a hypostome, which anchors the tick and allows it to inject saliva into the bite wound and extract blood from the wound. Feeding can take as long as 7 to 10 days, with distention receptors and chemoreceptors signaling when feeding is complete. After feeding, a tick falls off and, in the case of an adult female tick, lays eggs. After laying eggs or molting, a tick will begin feeding again.

Pathogen Acquisition and Transmission

Ticks primarily acquire pathogens during a blood meal, including co-feeding. Co-feeding occurs when, among a group of ticks on a host, one tick injects pathogens that the other ticks then acquire; the host itself may not even have a circulating pathogen at the time of feeding. Most tick pathogens, Dr. Alleman noted, are not acquired through transovarian transmission.

After acquisition, pathogens stay within the tick’s midgut until the next feeding, at which time they migrate to the salivary glands and get transmitted to the host through the saliva. Transmission time varies between pathogens. The goal for tick removal, Dr. Alleman mentioned, is to remove the tick in the window of time between pathogen acquisition and transmission.

Important Ticks

Brown dog tick (Rhipicephalus sanguineus)

  • Global distribution
  • Prefers indoor habitats and warmer climates
  • Pathogens: Ehrlichia canis, Anaplasma platys, Babesia canis

American dog tick (D. variabilis) and Rocky Mountain wood tick (D. andersoni )

  • Inflict painful bites
  • Pathogens: Rickettsia rickettsii, Francisella tularensis, Cytauxzoon felis

Gulf Coast Tick (Ambylomma maculatum)

  • Expanding distribution, including Gulf Coast and East Coast
  • Only females have shield on the back
  • Pathogens: Hepatazoon canis, ricksettsial agent that causes RMSF-like clinical symptoms in humans

Deer tick (Ixodes scapularis)

  • Northeastern and upper midwestern US distribution
  • Pathogens: B. burgdorferi and other Borrelia spp, Ehrlichia muris, Bartonella spp, Babesia spp causing human babesiosis, Powassan virus

Lone star tick (Amblyomma americanum)

  • Most abundant and aggressive tick, accounting for most human tick bites
  • Saliva is very irritating and can cause red meat allergies in humans
  • Only females have the lone star mark on the back
  • Pathogens: Ehrlichia chaffeensis and ewingii, Panola Mountain Ehrlichia, Borrelia lonestari, Ricksettsia rickettsii, C. felis, various viral agents

Dr. Alleman mentioned that B. lonestari is thought to cause southern tick-associated rash illness (STARI), which mimics Lyme disease. STARI occurs in humans but is not yet known to occur in domestic animals. This organism does not cross-react with B. burgdorferi and has not been cultivated.

The Veterinarians’ Role

Veterinarians, Dr. Alleman said, are well suited to play an important role in the One Health initiative to reduce tick-borne infections. For example, veterinarians screen dogs for tick-borne pathogens. In addition, veterinarians help prevent tick infestation by preventing tick reinfections and educating owners on reducing and preventing tick exposure on their pets and themselves.

Dr. JoAnna Pendergrass received her Doctor of Veterinary Medicine degree from the Virginia-Maryland College of Veterinary Medicine. Following veterinary school, she completed a postdoctoral fellowship at Emory University’s Yerkes National Primate Research Center. Dr. Pendergrass is the founder and owner of JPen Communications, a medical communications company.

Related Content:

Parasitology
Integrative approach to treating Giardia lamblia infections
Integrative approach to treating Giardia lamblia infections
Preventing transmission of Lyme disease
Preventing transmission of Lyme disease
Podcast CE: 360 parasite protection
Podcast CE: 360 parasite protection

Advertisement

Latest News

Oldest aardvark in Europe passes away

Integrative approach to treating Giardia lamblia infections

Innovative digital microscopy platform is launched

Enhanced pet health and wellness app now available

View More Latest News
Advertisement